CHEMICAL NAMES & FORMULAS
SIGNIFICANCE OF A CHEMICAL FORMULA

Chemical formulas are important because they indicate the relative number of atoms of each kind of a chemical compound.

- **For an ionic compound**: chemical formulas represent one *formula unit*
 - *Formula unit*: the simplest ratio of the compound’s positive and negative ions

- **For a molecule**: the molecular formula gives the number of atoms of each element contained in a single molecule of the compound.
Monatomic ions: ions formed from a single atom
- Ex: Na⁺, Mg²⁺, S²⁻

Naming monatomic ions:
- Cations (+):
 - Name of element + cation
 - Ex: K⁺, Potassium cation
 - Mg²⁺, Magnesium cation
 - Al³⁺, Aluminum cation

- Anions (-):
 - Base of element + -ide
 - Ex: F⁻, Fluoride
 - N³⁻, Nitride
 - Br⁻, Bromide
Predicting Ionic Charges

Oxidation numbers: the ions charges that atoms gain when they lose or gain their valence electrons; are the number of electrons they can lose or gain when bonding.
Predicting Ionic Charges

Group 1

Lose 1 electron to form **1+**

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Period</th>
<th>Ion Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>1+</td>
</tr>
<tr>
<td>Lithium</td>
<td>3</td>
<td>2</td>
<td>1+</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4</td>
<td>2</td>
<td>2+</td>
</tr>
<tr>
<td>Sodium</td>
<td>11</td>
<td>4</td>
<td>1+</td>
</tr>
<tr>
<td>Magnesium</td>
<td>12</td>
<td>4</td>
<td>2+</td>
</tr>
</tbody>
</table>

Note: The table snippet shows elements from the periodic table, highlighting the trend of Group 1 elements losing 1 electron to form a **1+** ion.
Group 2
Lose 2 electrons to form 2^+.
Group 13
Lose 3 electrons to form 3^+
Group 14 rarely forms ions :/
Group 15
Gain 3 electrons to form 3^-
Group 16
Gain 2 electrons to form 2-
Group 17
Gain 1 electrons to form 1^{-}
Groups 3-12 (Transition Metals) d-block elements form **variable charges**

Ex:
- Copper can be $\text{Cu}^+ \text{ or } \text{Cu}^{2+}$
- Iron can be $\text{Fe}^{2+} \text{ or } \text{Fe}^{3+}$
Binary compounds: compounds composed of two different elements

For ionic compounds…
- The total # of positive charges and negative charges must be equal
WRITING IONIC COMPOUND FORMULAS

Rules for writing formulas for ionic compounds:

1. Write the symbols & charges for the ions (cations first)
2. Cross over the charges as subscripts
3. Check to make sure the charges are equal

Ex: Aluminum Oxide

1. Write the symbols for the ions (cations first)

 $\text{Al}^{3+} \quad \text{O}^{2-}$

2. Cross over the charges as subscripts

 Al_2O_3

3. Check to make sure the charges are equal

 $2 \times (+3) = +6 \quad 3 \times (-2) = -6$
YOU TRY!

• Write the formulas for the binary ionic compounds formed between the following elements:
 ○ Potassium and iodine
 - KI
 ○ Magnesium and chlorine
 - MgCl₂
 ○ Sodium and sulfur
 - Na₂S
NAMING BINARY IONIC COMPOUNDS

- Involves combining the names of cations and anions
- **Rules for naming ionic compounds:**
 1. Name the cation first: full name of cation
 2. Name anion last: base of anion + -ide

 Ex: Al_2O_3
 - $\text{Al} = \text{aluminum}$
 - $\text{O} = \text{oxygen} \rightarrow \text{oxide}$
 - Aluminum oxide
YOU TRY!

- Name the binary ionic compounds indicated by the following formulas:
 - AgCl
 - Silver chloride
 - ZnO
 - Zinc oxide
 - CaBr$_2$
 - Calcium bromide
Some elements (transition metals) form two or more cations with different charges.

Use the Stock System of nomenclature for compounds with transitional metals.

- Roman numerals represent charges in parentheses:
 - Fe^{2+}, Iron(II)
 - Fe^{3+}, Iron(III)

Example: CuCl_2
Hint: undo the crisscross to determine cation charge!

- Copper(II) chloride
YOU TRY!

- Give the names for the following ionic compounds:
 - CuBr_2
 - Copper(II) bromide
 - PbCl_2
 - Lead(II) chloride
 - Fe_2O_3
 - Iron(III) oxide
Polyatomic ions are mostly anions (except NH_4^+)

- Most are oxyanions
 - **Oxyanion**: polyatomic ions that contain oxygen
- Most common anions have –ate endings
 (Ex: ClO_3^- chlorate)
• Treat polyatomic ions as one unit!
 o Use parentheses if more than one polyatomic ion is present
 ▷ \textit{Ex}: \(\text{Al}_2(\text{SO}_4)_3 \)
• Rules for naming compounds with polyatomic ions:
 o Same as naming for regular ionic compounds except:
 ▷ Name polyatomic ion as one unit
 ○ \textit{Ex}: \(\text{AgNO}_3 \) = silver \textit{nitrate}
YOU TRY!

- Name the following binary compounds:
 - Na$_2$CO$_3$
 - Sodium carbonate
 - Ag$_3$PO$_4$
 - Silver phosphate
 - Fe(NO$_3$)$_3$
 - Iron(III) nitrate
Sample for writing formulas for compounds with polyatomic ions:

- **Ex:** Aluminum hydroxide
 \[\text{Al}^{3+} + (\text{OH})^- \quad \text{Use crisscross method!} \]
 \[\text{Al(OH)}_3 \]

You Try!

- Give the formula for the following ionic compounds:
 - Barium hydroxide
 - \[\text{Ba(OH)}_2 \]
 - Copper(II) nitrate
 - \[\text{Cu(NO}_3\text{)}_2 \]
Binary Molecular Compounds

- Prefixes used to note how many atoms in a compound:
 1. mono-
 2. di-
 3. tri-
 4. tetra-
 5. penta-
 6. hexa-
 7. hepta-
 8. octa-
 9. nona-
 10. deca-

- Rules for naming molecular compounds:
 1. Less-electronegative element is given first.
 2. First element only gets a prefix if it has more than one.
 3. Second element is named by combining:
 - A prefix indicating the number of atoms
 - The root name of the second element
 - The ending -ide
 4. The o or a at the end of a prefix is usually dropped when the word following the prefix begins with another vowel.
<table>
<thead>
<tr>
<th>Formula</th>
<th>Prefix-System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2O</td>
<td>Dinitrogen monoxide</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen monoxide</td>
</tr>
<tr>
<td>NO_2</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>N_2O_3</td>
<td>Dinitrogen trioxide</td>
</tr>
<tr>
<td>N_2O_4</td>
<td>Dinitrogen tetroxide</td>
</tr>
<tr>
<td>N_2O_5</td>
<td>Dinitrogen pentoxide</td>
</tr>
</tbody>
</table>
YOU TRY!

Name the following molecular compounds:
- SO_3
 - Sulfur trioxide
- ICl_3
 - Iodine trichloride
- PBr_5
 - Phosphorus pentabromide

Write the formulas for the following molecular compounds:
- Carbon tetraiodide
 - Cl_4
- Phosphorus trichloride
 - PCl_3
- Oxygen difluoride
 - OF_2